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ABSTRACT: Unwanted evolution can rapidly degrade the
performance of genetically engineered circuits and metabolic
pathways installed in living organisms. We created the Evolu-
tionary Failure Mode (EFM) Calculator to computationally detect
common sources of genetic instability in an input DNA sequence.
It predicts two types of mutational hotspots: deletions mediated
by homologous recombination and indels caused by replication
slippage on simple sequence repeats. We tested the performance
of our algorithm on genetic circuits that were previously
redesigned for greater evolutionary reliability and analyzed the
stability of sequences in the iGEM Registry of Standard Biological
Parts. More than half of the parts in the Registry are predicted to
experience >100-fold elevated mutation rates due to the inclusion of unstable sequence configurations. We anticipate that the
EFM Calculator will be a useful negative design tool for avoiding volatile DNA encodings, thereby increasing the evolutionary
lifetimes of synthetic biology devices.
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Inactivating mutations can rapidly accumulate in the DNA
sequences of synthetic biology devices, especially when an

engineered activity imposes a fitness cost on the host cell.1,2

These stochastic “evolutionary failure modes” (EFMs) decrease
the predictability and productivity of bioengineering. Thus,
designing robustness against evolutionary failure into a DNA
sequence is an important goal for synthetic biology. Often,
mutational hotspots in a DNA construct lead to a small number
of very specific molecular events repeatedly arising and
dominating the EFMs observed in malfunctioning copies of a
device.3,4

Certain DNA sequence features are expected to be highly
unstable in nearly any chassis organism. Homologous
recombination between long repeat sequences commonly
leads to gene-sized or larger deletions. The rates of these
repeat-mediated deletions (RMDs) have been characterized
extensively in bacterial plasmids.5 Simple sequence repeats
(SSRs) are hotspots for short insertion and deletion mutations.
These consecutive copies of units consisting of one to a few
DNA bases are inherently unstable due to polymerase slippage
between units during DNA replication. Computational tools
have been created for predicting the relative instabilities of
different SSRs because these rapidly evolving sequences (also
known as microsatellites and variable number tandem repeats)
are often used in genotyping assays.6

Many different DNA sequences can potentially be used to
specify equivalent biological devicesby altering codon usage
in open-reading frames or by swapping out promoters of equal
strength, for example. Although it would be beneficial to
exclude sequence motifs that act as mutational hotspots when
choosing how to encode a device in DNA, this step is not
currently implemented in computer-aided design programs for
synthetic biology. Here, we describe the first generation of the
EFM Calculator, a software program that computationally
predicts potential mutational vulnerabilities in an input DNA
sequence so that they can be avoided.

■ RESULTS AND DISCUSSION

The EFM Calculator (http://barricklab.org/efm) is a web tool
that predicts mutation rates at RMD and SSR sites and
normalizes them to a baseline rate of point mutations to
calculate a relative instability prediction (RIP) score for an
input DNA sequence (see Methods) (Figure 1a). Sequences
with RIP scores = 1 contain no predicted hypermutable sites.
RIP scores >1 occur when SSR and RMD hotspots are detected
in a sequence. By editing these high-frequency failure modes

Special Issue: IWBDA 2014

Received: April 7, 2015
Published: June 22, 2015

Technical Note

pubs.acs.org/synthbio

© 2015 American Chemical Society 939 DOI: 10.1021/acssynbio.5b00068
ACS Synth. Biol. 2015, 4, 939−943

http://barricklab.org/efm
pubs.acs.org/synthbio
http://dx.doi.org/10.1021/acssynbio.5b00068


out of a sequence, its mutation rate could theoretically be
lowered by a factor equal to the RIP score. The EFM
Calculator utilizes mutation rate models that are based on a
generic wild-type bacterial host (e.g., Escherichia coli) by default,
but it also allows the user to specify a recA− bacterial host (with
lower rates of homologous recombination) for these calcu-
lations.
To test the EFM Calculator, we analyzed two sets of genetic

circuits that had previously been redesigned for greater
evolutionary robustness.4 In this study, Sleight et al. measured
an evolutionary half-life (E1/2) for each plasmid-encoded circuit
in E. coli, defined as the number of cell divisions (generations)
before its GFP output in a cell population decayed to 50% of its
original value.3 Then, they profiled what mutations were
causing the failure of each circuit by sequencing plasmids with
malfunctioning devices isolated from independently evolved
cells. We were careful to compare only redesigned circuits from
Sleight et al. that maintained similar GFP expression levels, as
this “cost” parameter was also found to greatly impact device
half-lives.4

The first circuit (T9002) received a very high RIP score of
486.3 from the EFM Calculator. E1/2 for this construct was only
7.1 generations (∼1 day of laboratory culture).4 Experimentally,
T9002 always failed due to a deletion between two copies of
the same terminator. The EFM Calculator was able to
accurately predict that this RMD would be the dominant
hotspot (Figure 1b). A redesigned version of this circuit
(T9002-E) that altered one of the terminators has a lower RIP
score of 101.6. In agreement with this prediction, T9002-E had
an E1/2 of ∼16.7 generations and failed due to a variety of
different mutations, including a different RMD involving

operator sequences,4 which was also predicted by the EFM
Calculator.
A second circuit, I7101 (R0011 + E0240), initially had a RIP

score of 180, dominated by a predicted RMD between tetR
operator sequences. This construct had an E1/2 of 19.8
generations, and all characterized mutants had this deletion.4

A re-engineered version of I7101 (R0010 + E0240) with an
alternative promoter had a reduced RIP of 120, and the
experimentally measured E1/2 doubled to ∼42.4 generations.
Interestingly, this circuit appeared to lose function due to
unknown mutations elsewhere in the plasmid or host genome
(i.e., outside of the circuit).4

To more widely examine how mutational hotspots might be
affecting synthetic biology, we used the EFM Calculator to
survey BioBrick sequences deposited in the International
Genetically Engineered Machine (iGEM) Registry of Standard
Biological Parts (http://parts.igem.org). Of the 20,952 parts
with lengths of >50 base pairs in the iGEM Registry, 57% had
RIP scores >100, and 8.5% had RIP scores >1000 when using
the default recA+ bacterial host setting (Figure 2a). Control data
sets in which the DNA sequences for each part in the Registry
were randomly shuffled (see Methods) exhibited much lower
levels of predicted instability. On average, only 19% of the parts
in each shuffled data set had RIP scores >100, and only 0.38%
had RIP scores >1000. In fact, none of the control data sets had
as many parts with RIP scores above these cutoffs as were in the
actual Registry (one-tailed Monte Carlo test, p < 0.001). This
analysis suggests that the genetic stability of many parts in the
iGEM Registry could be substantially improved by redesigning
their sequences to eliminate mutational hotspots predicted by
the EFM Calculator.

Figure 1. (a) The EFM Calculator accepts a DNA sequence as input, predicts two types of hypermutable sites in this sequence, and summarizes the
overall prediction of instability with a RIP score. It outputs an HTML file of hypermutable sites on an interactive drawing of the sequence and in a
table. The RIP score represents the factor by which redesigning the input sequence to eliminate predicted SSR and RMD mutational hotspots
(leaving only the baseline rate of BPS mutations) could theoretically reduce the overall rate of mutations that contribute to the evolutionary failure
modes of this DNA sequence when it is deployed in a bacterial host. (b) The original version of a genetic circuit that expresses GFP (BioBrick part
T9002) receives a RIP score of 486.3. A redesigned version (T9002-E), shown experimentally to have a longer evolutionary half-life by Sleight et al.,4

receives a more stable RIP score of 101.6.
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Of the top ten most frequently used coding region parts,
three were predicted to have greatly elevated mutation rates:
C0061, a luxI autoinducer synthetase (RIP 226); C0012, a lacI
repressor with a degradation tag (RIP 218); and E1010, an
engineered mutant of red fluorescent protein (RIP 178.3). All
three parts were predicted to be unstable due to SSRs. For
E1010, these included a hexanucleotide triplet repeat and two
mononucleotide runs (Figure 2b). As was the case for these
sequences, the EFM Calculator predicted that SSRs also
dominate the mutation rates for 70.8% of all parts in the
Registry with RIP scores >100. The other 29.2%, with mutation
rates dominated by RMDs, were often composite parts (i.e.,
devices consisting of multiple subparts) that contained
homologous repeats due to reusing exact copies of the same
genetic part, like the original versions of the circuits that were
studied by Sleight et al.4

The extent to which the mutational hotspots predicted by
the EFM Calculator impact the overall reliability of synthetic
biology across different organisms and applications is unknown.
Researchers rarely characterize why specific DNA sequences fail
to function as planned; a trial-and-error approach of creating

several constructs and only studying whichever one functions
best is more typical. Thus, although the quantitative predictions
of the EFM Calculator are based on experimentally determined
mutation rates, there are very few measurements of the
evolutionary half-lives of genetic devices with which to test
whether these mutations lead to important EFMs. We hope
that making this tool available online will encourage more
synthetic biologists and iGEM teams to consider and
characterize the genetic stability of their DNA designs.
The SSR and RMD mutations predicted by the EFM

Calculator occur with greatly elevated rates in most organisms
due to the highly conserved mechanisms of DNA replication
and repair.2 Still, the overall evolutionary reliability of any given
DNA-encoded device may also depend critically on other
factors. For example, transposable genetic elements represent a
competing mutational process; they can inactivate synthetic
constructs when new transposon copies insert into critical
genes.7 However, rates of transposition vary greatly, even
among closely related E. coli strains, and many transposon
families do not have target sites with any predictable DNA
sequence conservation.8 Thus, it would be difficult to

Figure 2. (a) Distribution of RIP scores predicted by the EFM Calculator for parts with lengths of >50 base pairs in the iGEM Registry. The colored
shading of bars demarcates 10-fold increases in predicted mutational instability. (b) EFM Calculator output for BioBrick part E1010, one of the top
ten most used coding sequences in the Registry. The RIP score of 178.3 indicates that the mutation rate in this part is predicted to be 178 times the
baseline rate of base-pair substitutions. Three simple sequence repeats contribute to this genetic instability prediction.
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incorporate predictions of transposon mutations into the EFM
Calculator. Instead, the best way to address this source of
genetic instability may be to use “clean-genome” microbial
strains in which this mutation type has been eliminated by
deleting all transposable elements from the host genome.7

Whether an inactivating mutation in an engineered DNA
device affects the function of the cell population on a relevant
time scale depends not only on the rate at which it arises but
also on the fitness benefit of encoding an inactivated device
variant relative to an unmutated device.2 Part of the cost of
engineered DNA devices is simply due to expressing additional
protein components. This metabolic burden is influenced by
many factors (promoter strength, ribosome binding site, codon
usage, plasmid copy number), and a higher burden is associated
with decreased overall performance and stability.9 Some of
these gene expression properties can be predicted by tools, such
as the Ribosome Binding Site Calculator,10 but there are also
fitness costs that are specific to how different heterologous
proteins and pathways may interfere with host cell replication.
The complex, emergent nature of these interactions makes
them very difficult to accurately predict from DNA sequence
alone, so they are also outside the scope of the EFM calculator.
There are additional hypermutable DNA sequence features

that could be incorporated into future versions of the EFM
calculator to further refine RIP score calculations. For example,
intrastrand DNA secondary structures can expose specific bases
to elevated rates of chemical damage.2 However, even at this
stage, the EFM Calculator can be used as an effective negative
design tool. By alerting users to the presence of putative
hypermutable sites in their DNA constructs, they can at least
avoid these known sources of genetic instability that are
intrinsic to the sequence of the part alone. The EFM Calculator
provides scientists and engineers with the means to redesign
potentially volatile sequences in silico before they waste time
and effort creating genetic devices that are unlikely to function
reliably when deployed in living organisms.

■ METHODS

EFM Calculator Implementation. The EFM Calculator
(version 1.0.0) is a web tool implemented in Python with the
Django framework. DNA sequences are input in FASTA,
GenBank, or XML format using Biopython.11 Processing
occurs via Python code that invokes MUMmer (version
3.23).12 An interactive HTML file with JavaScript generated
using the SCRIBL library13 and a machine-readable comma-
separated values (CSV) text file are output. For input
sequences in GenBank or XML formats, there is an option to
include only mutations predicted within regions of the
sequence that are annotated with features (e.g., protein-coding
genes and promoters) in the RIP calculations and output.
Simple Sequence Repeat (SSR) Predictions. SSRs are

defined by two parameters: the length of the repeat unit (L), in
base pairs, and the number of consecutive copies of the repeat
unit (N) (Figure S1a, Supporting Information). The EFM
Calculator identifies all potentially hypermutable SSRs with L ≤
15. Larger repeat units are more likely to lead to recombination
than to polymerase slippage,5 so they are accounted for by the
RMD model described in the next section. SSRs must have a
minimum length and repeat number to act as mutational
hotspots.14−17 Therefore, we only include mutation rate
predictions for SSRs in which N ≥ 4 for the case of L = 1
and N ≥ 3 for the case of L ≥ 2.

Previous analyses have established an exponential relation-
ship between values of N and the per-generation mutation rate
(μ),6 so we used this as a basis for our quantitative modeling.
For each SSR, the EFM Calculator estimates a per-generation
mutation rate (μ) according to one of the following two
models: log10(μ) = −12.9 + 0.729N (L = 1) and log10(μ) =
−4.749 + 0.063N (L ≥ 2). We determined these values from
log−linear fits to published experimental data for the cases of L
= 1 (R2 = 0.95, p = 0.003) and L ≥ 2 (R2 = 0.37, p = 4 × 10−8)
(Figure S1b, Supporting Information). For L = 1, we fit data
from a mutation accumulation experiment with E. coli.14 For L
≥ 2, we fit data from targeted sequencing of specific loci during
parallel serial passage experiments performed on E. coli,15

Burkholderia pseudomallei,16 and Yersinia pestis.17 When multiple
SSRs overlap, the EFM Calculator includes only the dominant
one (with maximum N and minimum L).

Repeat-Mediated Deletion (RMD) Predictions. Hyper-
mutable direct sequence repeats are defined by two parameters:
length of each copy of the repeat (LR), in base pairs, and the
distance between the repeats (D), in base pairs (Figure S2a,
Supporting Information). The EFM Calculator uses MUMmer
to identify all exact repeats with LR ≥ 16 in the input sequence.
Only repeats with the same orientation (for which a
recombination event will lead to a deletion) are considered in
mutation rate calculations. Shorter repeats and repeat
sequences interrupted by base mismatches generally experience
greatly reduced recombination rates,5 so we do not include
these cases in our model. The L and D values for each direct
sequence repeat are used to predict an RMD rate according to
empirical equations (specific to recA− or recA+ hosts)
constructed by Oliveira et al. from a meta-analysis of
recombination rates observed on multicopy plasmids in E.
coli and B. subtilis5 (Figure S2b,c, Supporting Information).
These models have also been reported to predict genomic
recombination rates in other bacteria reasonably well.5 If there
are more than two copies of the same repeat, then the rates for
every pair are added together to estimate the total predicted
RMD rate.

Relative Instability Prediction (RIP) Score. The EFM
Calculator outputs a consolidated RIP score that reflects the
overall instability of an input DNA sequence relative to a
sequence of the same length that does not include any
predicted mutational hotspots. For this baseline, we used the
rate of base-pair substitution (BPS) mutations estimated from
genome sequencing of E. coli mutation accumulation lines.14

The expected baseline BPS mutation rate in an input DNA
sequence is equal to this per-base rate times the length of the
sequence. The RIP score is defined as the sum of the predicted
RMD, SSR, and BPS rates for a sequence divided by the BPS
rate.
Sequences with RIP scores = 1 have no predicted SSR or

RMD mutations. Sequences with RIP scores >1 include SSR
and/or RMD sites that are expected to lead to increased rates
of device failure. For example, a RIP score of 100 means that
the sequence is predicted to experience a total rate of SSR and
RMD mutations that is 99 times the baseline BPS mutation rate
alone. Therefore, the RIP score is also an estimate of the
greatest factor by which one can expect to improve the genetic
stability of a given device by redesigning its sequence to
eliminate all predicted mutational hotspots.

iGEM Registry Analysis. Sequences were retrieved from
the iGEM Registry Web site as a single FASTA file that
included all parts submitted before July 29, 2013. Only parts
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longer than 50 base pairs in length were analyzed. We
generated 956 control data sets with the exact same base
compositions, lengths, and sequence counts as the Registry by
randomly shuffling the sequences of every part. We compared
the distributions of RIP scores predicted by the EFM
Calculator for these Monte Carlo randomized data sets to the
results for the iGEM Registry sequences to determine whether
the actual parts were significantly less stable than expected.
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